-
Joris ten Tusscher authored
- Removed the eval tests. - Added tests for QuickCheck - Note that something is broken: multiple tests fail.
Joris ten Tusscher authored- Removed the eval tests. - Added tests for QuickCheck - Note that something is broken: multiple tests fail.
SimpleFormulaChecker.hs 11.68 KiB
module SimpleFormulaChecker where
import Language.Java.Syntax
import Language.Java.Parser
import Language.Java.Pretty
import Z3.Monad
import Z3.Opts
import Javawlp.Engine.Types
import Javawlp.Engine.HelperFunctions
import LogicIR.Expr
import LogicIR.Eval
import LogicIR.Frontend.Java
import LogicIR.Backend.Z3
import LogicIR.Backend.QuickCheck
import LogicIR.Backend.Pretty
import LogicIR.Backend.Null
import ModelParser.Parser
import ModelParser.Model
import Control.Monad (when)
import Control.Monad.Trans (liftIO)
import Data.Maybe
import Data.List
import Debug.Trace
import Data.Int
import qualified Data.Map as M
-- See README.md for a high-level description of this project.
type MethodDef = ([TypeDecl], Stmt, TypeEnv)
-- Takes a java source file and a method name and returns the class declarations,
-- the method body and the method's formal parameters.
parseMethod :: (FilePath, String) -> IO MethodDef
parseMethod (src, name) = do
-- parse the Java source file:
compilationnUnit <- parseJava src
-- get all the class declarations in the Java source file; usually a single file defines only
-- one class, but it could theoretically have more:
let decls = getDecls compilationnUnit
-- get the method's body ; to make it simple, the method's name is assumed to uniquely identify its body
let mbody = fromJust $ getMethod decls (Ident name)
-- get the method's formal parameters:
let env = getMethodTypeEnv decls (Ident name)
-- return the relevant data
return (decls, mbody, env)
where
-- parse a Java source file, and extracts the necessary information from the compilation unit
parseJava :: FilePath -> IO CompilationUnit
parseJava s = do
-- Get the source code
source <- readFile s
-- Parse the source code
case parser compilationUnit source of
Left parseError -> error (show parseError)
Right compUnit -> return compUnit
-- Get a list of all calls to a method of a specific name from a method definition.
getMethodCalls :: MethodDef -> String -> [MethodInvocation]
getMethodCalls (_, StmtBlock (Block bs), _) name = mapMaybe extractMethodInv bs
where
extractMethodInv :: BlockStmt -> Maybe MethodInvocation
extractMethodInv (BlockStmt (ExpStmt (MethodInv i@(MethodCall (Name [Ident n]) _)))) = if n == name then Just i else Nothing
extractMethodInv _ = Nothing
-- [pre(a), pre(b), pre(c)] -> (a AND b AND c)
extractExpr :: [MethodInvocation] -> Exp
extractExpr call = combineExprs $ map (\(MethodCall (Name [Ident _]) [a]) -> a) call
where combineExprs :: [Exp] -> Exp
combineExprs [e] = e
combineExprs (e:es) = BinOp e CAnd (combineExprs es)
-- Check if two Z3 AST's are equivalent
isEquivalent :: Z3 AST -> Z3 AST -> IO (Result, Maybe Model)
isEquivalent ast1' ast2' = evalZ3 z3
where
z3 = do
ast1 <- ast1'
ast2 <- ast2'
astEq <- mkEq ast1 ast2
astNeq <- mkNot astEq -- negate the question to get a model
assert astNeq
r <- solverCheckAndGetModel -- check in documentatie
solverReset
return r
-- Function that shows a human-readable model and also highlights potential inconsistencies.
-- Sorry for the code, it is quite awful...
showRelevantModel :: Z3Model -> IO ()
showRelevantModel model = do
putStrLn "Pretty model:"
mapM_ (putStrLn . prettyModelVal) $ fromKeys (consts ++ arrays)
where modelMap :: M.Map String ModelVal
modelMap = M.fromList model
modelClean :: M.Map String ModelVal
modelClean = M.filterWithKey (\k _ -> '!' `notElem` k) $ M.map modelCleanFunc modelMap
fromKeys :: [String] -> [(String, ModelVal)]
fromKeys = map (\k -> let v = M.findWithDefault defaultArray k modelClean in (k, v))
defaultArray :: ModelVal
defaultArray = ArrayFunc [InstElse (-1000000000000000)] -- nullTest2
-- Pretty print the model value
prettyModelVal :: (String, ModelVal) -> String
prettyModelVal (k, BoolVal b) = k ++ " = " ++ if b then "true" else "false"
prettyModelVal (k, IntVal n) = k ++ " = " ++ show n
prettyModelVal (k, ArrayFunc a) = k ++ " = " ++ final ++ " " -- ++ show (aNull, aLength, a, arrKv, elseVal, length (buildArray 0))
where (BoolVal aNull) = M.findWithDefault (BoolVal False) (k ++ "?null") modelClean
(IntVal aLength) = M.findWithDefault (IntVal (-1)) (k ++ "?length") modelClean
[InstElse elseVal] = filter (not . isInst) a
arrKv :: [(Int, Int)]
arrKv = filter (\(k, v) -> v /= elseVal) (sort (map (\(InstInt k v) -> (k, v)) (filter isInst a)))
isInst :: FuncInst -> Bool
isInst (InstInt _ v) = True
isInst _ = False
isValidArray :: Bool
isValidArray = null arrKv || (minIndex >= 0 && maxIndex < aLength)
where minIndex = minimum indices
maxIndex = maximum indices
indices = map fst arrKv
arrMap :: M.Map Int Int
arrMap = M.fromList arrKv
buildArray :: Int -> [Int]
buildArray i = if aLength == 0 then [] else M.findWithDefault elseVal i arrMap : if i + 1 == aLength || i + 1 > 100 then [] else buildArray (i + 1)
final :: String
final | aNull = "null"
| isValidArray = show (buildArray 0) ++ if aLength > 100 then " (TRUNCATED, length: " ++ show aLength ++ ")" else "" --let xs = buildArray 0 in if length xs > 100 then show (take 100 xs) ++ " (TRUNCATED)" else show xs
| otherwise = "inconsistent array representation" -- blub2
-- Remove all occurrences of ArrayRef and ArrayAsConst for easier processing later, also does type casting
modelCleanFunc :: ModelVal -> ModelVal
modelCleanFunc (BoolVal b) = BoolVal b
modelCleanFunc (IntVal n) = IntVal (cropInt32 n)
modelCleanFunc (ArrayRef s) = let Just v = M.lookup s modelMap in v
modelCleanFunc (ArrayAsConst n) = ArrayFunc [InstElse (cropInt32 n)]
modelCleanFunc (ArrayFunc v) = ArrayFunc (map funcInstClean v)
where funcInstClean :: FuncInst -> FuncInst
funcInstClean (InstInt k v) = InstInt (cropInt32 k) (cropInt32 v)
funcInstClean (InstElse v) = InstElse (cropInt32 v)
-- Crop an Integer to an Int32
cropInt32 :: Int -> Int
cropInt32 n = fromIntegral (fromIntegral n :: Int32) :: Int
-- Names of the array variables
arrays :: [String]
arrays = nub $ M.keys (M.filter isArray modelClean) ++ mapMaybe arrayName (M.keys modelClean)
-- Names of the constant variables
consts :: [String]
consts = filter (\v -> not (isSuffixOf "?length" v || isSuffixOf "?null" v)) $ M.keys (M.filter isConst modelClean)
-- Returns Just "a" for "a?length" and "a?null"
arrayName :: String -> Maybe String
arrayName s
| "?length" `isSuffixOf` s = Just $ take (length s - 7) s
| "?null" `isSuffixOf` s = Just $ take (length s - 5) s
| otherwise = Nothing
-- Whether a ModelVal is an array
isArray :: ModelVal -> Bool
isArray (ArrayFunc _) = True
isArray _ = False
-- Whether a ModelVal is a constant
isConst :: ModelVal -> Bool
isConst v = case v of
BoolVal _ -> True
IntVal _ -> True
_ -> False
-- Determine the equality of two method's pre/post conditions.
determineFormulaEq :: MethodDef -> MethodDef -> String -> IO Bool
determineFormulaEq m1@(decls1, mbody1, env1) m2@(decls2, mbody2, env2) name = do
-- get pre/post condition
let (e1, e2) = (extractCond m1 name, extractCond m2 name)
let (lexpr1', lexpr2') = (javaExpToLExpr e1 env1 decls1, javaExpToLExpr e2 env2 decls2)
-- preprocess "a == null" to "isNull(a)"
let (lexpr1, lexpr2) = (lExprPreprocessNull lexpr1', lExprPreprocessNull lexpr2')
let (ast1, ast2) = (lExprToZ3Ast lexpr1, lExprToZ3Ast lexpr2)
putStrLn $ "e1:\n" ++ prettyPrint e1 ++ "\n\ne2:\n" ++ prettyPrint e2 ++ "\n"
putStrLn $ "LogicIR.Expr 1:\n" ++ show lexpr1 ++ "\n\nLogicIR.Expr 2:\n" ++ show lexpr2 ++ "\n"
putStrLn $ "LogicIR.Pretty 1:\n" ++ prettyLExpr lexpr1 ++ "\n\nLogicIR.Pretty 2:\n" ++ prettyLExpr lexpr2 ++ "\n"
ast1s <- showZ3AST ast1
putStrLn $ "Z3 AST 1:\n" ++ ast1s ++ "\n"
ast2s <- showZ3AST ast2
putStrLn $ "Z3 AST 2:\n" ++ ast2s ++ "\n"
putStrLn "Z3 Result:"
-- Check if the formula is satisfiable. If it is, print the instantiation of its free
-- variables that would make it true:
(result, model) <- isEquivalent ast1 ast2
case result of
Unsat -> do
putStrLn "formulas are equivalent!"
return True
Undef -> do
putStrLn "unable to decide the satisfiablity (TODO: use QuickCheck)" -- this should happen on timeout, but the Z3 library does not function properly...
return False
Sat -> do
putStrLn "formulas are NOT equivalent, model:"
case model of
Just m -> do s <- evalZ3With Nothing (Z3.Opts.opt "timeout" (1000 :: Int)) (modelToString m) -- TODO: the option is set, but does not actually work :(
putStrLn s
showRelevantModel $ parseModel s
return False
_ -> return False
where
extractCond :: MethodDef -> String -> Exp
extractCond m n = extractExpr (getMethodCalls m n)
showZ3AST :: Z3 AST -> IO String
showZ3AST ast' = evalZ3 $ ast' >>= astToString
parse :: (FilePath, String) -> (FilePath, String) -> IO (MethodDef, MethodDef)
parse method1@(_, name1) method2@(_, name2) = do
-- load the methods
m1@(decls1, mbody1, env1) <- parseMethod method1
m2@(decls2, mbody2, env2) <- parseMethod method2
when (env1 /= env2) $ fail "inconsistent method parameters"
when (decls1 /= decls2) $ fail "inconsistent class declarations (TODO)"
return (m1, m2)
-- Function that compares both the pre and the post condition for two methods.
-- It is assumed that both methods have the same environment (parameter names, class member names, etc).
compareSpec :: (FilePath, String) -> (FilePath, String) -> IO Bool
compareSpec method1@(_, name1) method2@(_, name2) = do
(m1, m2) <- parse method1 method2
putStrLn $ "----PRE---- (" ++ name1 ++ " vs " ++ name2 ++ ")"
preAns <- determineFormulaEq m1 m2 "pre"
putStrLn "\n----POST---"
postAns <- determineFormulaEq m1 m2 "post"
return $ preAns && postAns
methodDefToLExpr :: MethodDef -> MethodDef -> String -> (LExpr, LExpr)
methodDefToLExpr m1@(decls1, _, env1) m2@(decls2, _, env2) name = do
-- get pre/post condition
let (e1, e2) = (extractCond m1 name, extractCond m2 name)
let (lExpr1', lExpr2') = (javaExpToLExpr e1 env1 decls1, javaExpToLExpr e2 env2 decls2)
-- preprocess "a == null" to "isNull(a)"
let (lExpr1, lExpr2) = (lExprPreprocessNull lExpr1', lExprPreprocessNull lExpr2')
(lExpr1, lExpr2)
where extractCond m n = extractExpr $ getMethodCalls m n
testSpec :: (FilePath, String) -> (FilePath, String) -> IO Bool
testSpec method1@(_, name1) method2@(_, name2) = do
(m1, m2) <- parse method1 method2
putStrLn $ "----PRE---- (" ++ name1 ++ " vs " ++ name2 ++ ")"
let (lExpr1, lExpr2) = methodDefToLExpr m1 m2 "pre"
preAns <- testEquality 10000 lExpr1 lExpr2
putStrLn "\n----POST---"
let (lExpr1, lExpr2) = methodDefToLExpr m1 m2 "post"
postAns <- testEquality 10000 lExpr1 lExpr2
return $ preAns && postAns