Skip to content
Snippets Groups Projects
convertQuery.go 15.8 KiB
Newer Older
  • Learn to ignore specific revisions
  • LoLo5689's avatar
    LoLo5689 committed
    /*
    This program has been developed by students from the bachelor Computer Science at Utrecht University within the Software Project course.
    © Copyright Utrecht University (Department of Information and Computing Sciences)
    */
    
    
    package aql
    
    import (
    	"errors"
    	"fmt"
    
    	"git.science.uu.nl/graphpolaris/query-conversion/entity"
    
    ConvertQuery converts an IncomingQueryJSON object into AQL
    	JSONQuery: *entity.IncomingQueryJSON, the query to be converted to AQL
    	Returns: *string, the AQL query and a possible error
    */
    func (s *Service) ConvertQuery(JSONQuery *entity.IncomingQueryJSON) (*string, error) {
    
    
    	// Check to make sure all indexes exist
    
    	// The largest possible id for an entity
    
    	largestEntityID := len(JSONQuery.Entities) - 1
    
    	// The largest possible id for a relation
    
    	largestRelationID := len(JSONQuery.Relations) - 1
    
    
    	// Make sure no entity should be returned that is outside the range of that list
    
    	for _, e := range JSONQuery.Return.Entities {
    
    		// If this entity references an entity that is outside the range
    
    		if e > largestEntityID || e < 0 {
    
    			return nil, errors.New("non-existing entity referenced in return")
    
    		}
    	}
    
    	// Make sure that no relation mentions a non-existing entity
    
    	for _, r := range JSONQuery.Relations {
    
    		if r.EntityFrom > largestEntityID || r.EntityTo > largestEntityID {
    
    			return nil, errors.New("non-exisiting entity referenced in relation")
    
    		}
    	}
    
    	// Make sure no non-existing relation is tried to be returned
    
    	for _, r := range JSONQuery.Return.Relations {
    
    		if r > largestRelationID || r < 0 {
    
    			return nil, errors.New("non-existing relation referenced in return")
    
    	result := createQuery(JSONQuery)
    
    LoLo5689's avatar
    LoLo5689 committed
    /*
    createQuery generates a query based on the json file provided
    	JSONQuery: *entity.IncomingQueryJSON, this is a parsedJSON struct holding all the data needed to form a query,
    	Return: *string, a string containing the corresponding AQL query and an error
    
    func createQuery(JSONQuery *entity.IncomingQueryJSON) *string {
    
    	// Note: Case #4, where there is an edge only query (without any entity), is not supported by frontend
    
    	// If a modifier is used, disable the limit
    
    	if len(JSONQuery.Modifiers) > 0 {
    		JSONQuery.Limit = -1
    
    	}
    
    	var (
    		relationsToReturn []string
    		nodesToReturn     []string
    		nodeUnion         string
    		relationUnion     string
    	)
    
    	// If we've already used an entity we can set the value to true so we skip it in the result later
    	entityDone := make(map[int]bool)
    	for o := range JSONQuery.Entities {
    		entityDone[o] = false
    	}
    
    	// Loop over all relations
    	ret := ""
    
    
    	// Add a WITH statement for entityTo
    	includedTypes := make(map[string]bool)
    	allTypes := make(map[string]bool)
    	for _, relation := range JSONQuery.Relations {
    		if relation.EntityFrom >= 0 {
    			includedTypes[JSONQuery.Entities[relation.EntityFrom].Type] = true
    			allTypes[JSONQuery.Entities[relation.EntityFrom].Type] = true
    
    			// If the type is in the entityTo it is a valid type but not yet included
    			if relation.EntityTo >= 0 {
    				allTypes[JSONQuery.Entities[relation.EntityTo].Type] = true
    			}
    		}
    		if relation.EntityFrom == -1 && relation.EntityTo >= 0 {
    			includedTypes[JSONQuery.Entities[relation.EntityTo].Type] = true
    			allTypes[JSONQuery.Entities[relation.EntityTo].Type] = true
    		}
    	}
    
    	// Include all types that are not yet included
    
    LoLo5689's avatar
    LoLo5689 committed
    	first := true
    
    	for k := range allTypes {
    		if !includedTypes[k] {
    
    LoLo5689's avatar
    LoLo5689 committed
    			if first {
    				ret += fmt.Sprintf("WITH %v", k)
    				first = false
    			} else {
    				ret += fmt.Sprintf(", %v", k)
    			}
    
    LoLo5689's avatar
    LoLo5689 committed
    	if !first {
    		ret += "\n"
    	}
    
    	for i, relation := range JSONQuery.Relations {
    
    
    		relationName := fmt.Sprintf("r%v", i)
    
    		if relation.EntityFrom >= 0 {
    			// if there is a from-node
    			// create the let for this node
    
    			// IF WE'VE ALREADY SEEN THIS ENTITY WE DON'T HAVE TO REQUERY IT, WE CAN JUST REUSE THE LET BINDING
    			if !entityDone[relation.EntityFrom] {
    				fromName := fmt.Sprintf("n%v", relation.EntityFrom)
    
    				ret += *createNodeLet(&JSONQuery.Entities[relation.EntityFrom], &fromName)
    				entityDone[relation.EntityFrom] = true
    			}
    
    			var function *entity.QueryFunctionStruct
    			for _, f := range JSONQuery.Functions {
    				if (f.GroupID == relation.EntityFrom && f.ByID == relation.EntityTo) || (f.GroupID == relation.EntityTo && f.ByID == relation.EntityFrom) {
    					function = &f
    				}
    			}
    			ret += *createRelationLetWithFromEntity(&relation, relationName, &JSONQuery.Entities, JSONQuery.Limit, function)
    
    		} else if relation.EntityTo >= 0 {
    
    			fmt.Println("Joris are you a madman! How did this happen?")
    
    			// if there is only a to-node
    
    			if !entityDone[relation.EntityTo] {
    				toName := fmt.Sprintf("n%v", relation.EntityTo)
    
    				ret += *createNodeLet(&JSONQuery.Entities[relation.EntityTo], &toName)
    				entityDone[relation.EntityTo] = true
    			}
    
    			ret += *createRelationLetWithOnlyToEntity(&relation, relationName, &JSONQuery.Entities, JSONQuery.Limit)
    
    			// Add this relation to the list
    		} else {
    			fmt.Println("Relation-only queries are currently not supported")
    			continue
    		}
    
    		// Add this relation to the list
    		relationsToReturn = append(relationsToReturn, relationName)
    	}
    
    	// Add node let statements for nodes that are not yet returned
    	// Create a set from all the entity-from's and entity-to's, to check if they are returned
    	nodeSet := make(map[int]bool)
    
    	for _, relation := range JSONQuery.Relations {
    
    		nodeSet[relation.EntityFrom] = true
    		nodeSet[relation.EntityTo] = true
    	}
    
    	// Check if the entities to return are already returned
    
    	for _, entityIndex := range JSONQuery.Return.Entities {
    
    		if !nodeSet[entityIndex] {
    			// If not, return this node
    			name := fmt.Sprintf("n%v", entityIndex)
    
    			ret += *createNodeLet(&JSONQuery.Entities[entityIndex], &name)
    
    
    			// Add this node to the list
    			nodesToReturn = append(nodesToReturn, name)
    		}
    	}
    
    
    	if len(JSONQuery.Functions) == 0 {
    		//If there are modifiers within the query, we run a different set of checks which focus on quantifiable aspects
    		if len(JSONQuery.Modifiers) > 0 {
    			modifier := JSONQuery.Modifiers[0]
    			// There is a distinction between (relations and entities) and (relations or entities)
    			if len(JSONQuery.Return.Relations) > 0 && len(JSONQuery.Return.Entities) > 0 {
    
    				var pathDistinction string // .vertices or .edges
    
    				// Select the correct addition to the return of r0[**]
    				if modifier.SelectedType == "entity" {
    					// ASSUMING THERE IS ONLY 1 RELATION
    					if JSONQuery.Relations[0].EntityFrom == modifier.SelectedTypeID {
    						// This should always be 0, because that is the start of the path
    						pathDistinction = ".vertices[0]"
    
    					} else {
    						// Otherwise take the depth.max -1 to get the last
    						pathDistinction = fmt.Sprintf(".vertices[%v]", JSONQuery.Relations[0].Depth.Max)
    
    				// Getting the attribute if there is one
    				if modifier.AttributeIndex != -1 {
    					if modifier.SelectedType == "entity" {
    						pathDistinction += fmt.Sprintf(".%v", JSONQuery.Entities[modifier.SelectedTypeID].Constraints[modifier.AttributeIndex].Attribute)
    
    					} else {
    						pathDistinction += fmt.Sprintf(".%v", JSONQuery.Relations[modifier.SelectedTypeID].Constraints[modifier.AttributeIndex].Attribute)
    
    				// If count is used it has to be replaced with Length + unique else use the modifier type
    				if modifier.Type == "COUNT" {
    					ret += fmt.Sprintf("RETURN LENGTH (unique(r0[*]%v))", pathDistinction)
    
    				} else {
    					ret += fmt.Sprintf("RETURN %v (r0[*]%v)", modifier.Type, pathDistinction)
    
    				// Check if the modifier is on an attribute
    				if modifier.AttributeIndex == -1 {
    					ret += fmt.Sprintf("RETURN LENGTH (n%v)", modifier.SelectedTypeID)
    				} else {
    					var attribute string
    
    					// Selecting the right attribute from either the entity constraint or relation constraint
    					if modifier.SelectedType == "entity" {
    						attribute = JSONQuery.Entities[modifier.SelectedTypeID].Constraints[modifier.AttributeIndex].Attribute
    
    					} else {
    						attribute = JSONQuery.Relations[modifier.SelectedTypeID].Constraints[modifier.AttributeIndex].Attribute
    
    					// If count is used it has to be replaced with Length + unique else use the modifier type
    					if modifier.Type == "COUNT" {
    						ret += fmt.Sprintf("RETURN LENGTH (unique(n%v[*].%v))", modifier.SelectedTypeID, attribute)
    
    					} else {
    						ret += fmt.Sprintf("RETURN %v (n%v[*].%v)", modifier.Type, modifier.SelectedTypeID, attribute)
    
    			// Create UNION statements that create unique lists of all the nodes and relations
    			// Thus removing all duplicates
    			nodeUnion = "\nLET nodes = first(RETURN UNION_DISTINCT("
    			for _, relation := range relationsToReturn {
    				nodeUnion += fmt.Sprintf("flatten(%v[**].vertices), ", relation)
    			}
    
    			for _, node := range nodesToReturn {
    				nodeUnion += fmt.Sprintf("%v,", node)
    			}
    			nodeUnion += "[],[]))\n"
    
    			relationUnion = "LET edges = first(RETURN UNION_DISTINCT("
    			for _, relation := range relationsToReturn {
    				relationUnion += fmt.Sprintf("flatten(%v[**].edges), ", relation)
    			}
    			relationUnion += "[],[]))\n"
    
    			ret += nodeUnion + relationUnion
    			ret += "RETURN {\"vertices\":nodes, \"edges\":edges }"
    
    		}
    	} else {
    		ret += createTableWithFunctions(JSONQuery.Functions, JSONQuery.Relations, JSONQuery.Entities)
    
    LoLo5689's avatar
    LoLo5689 committed
    /*
    createNodeLet generates a 'LET' statement for a node related query
    	node: *entity.QueryEntityStruct, node is an entityStruct containing the information of a single nod,
    	name: *string, is the autogenerated name of the node consisting of "n" + the index of the node,
    	Return: *string, a string containing a single LET-statement in AQL
    
    */
    func createNodeLet(node *entity.QueryEntityStruct, name *string) *string {
    	header := fmt.Sprintf("LET %v = (\n\tFOR x IN %v \n", *name, node.Type)
    	footer := "\tRETURN x\n)\n"
    	constraints := *createConstraintStatements(&node.Constraints, "x", false)
    
    	ret := header + constraints + footer
    	return &ret
    }
    
    
    LoLo5689's avatar
    LoLo5689 committed
    /*
    createRelationLetWithFromEntity generates a 'LET' statement for relations with an 'EntityFrom' property and optionally an 'EntitiyTo' property
    	relation: *entity.QueryRekationStruct, relation is a relation struct containing the information of a single relation,
    	name: string, is the autogenerated name of the node consisting of "r" + the index of the relation,
    	entities: *[]entity.QueryEntityStrucy, is a list of entityStructs that are needed to form the relation LET-statement,
    	Return: *string, a string containing a single LET-statement in AQL
    
    func createRelationLetWithFromEntity(relation *entity.QueryRelationStruct, name string, entities *[]entity.QueryEntityStruct, limit int, function *entity.QueryFunctionStruct) *string {
    
    	header := fmt.Sprintf("LET %v = (\n\tFOR x IN n%v \n", name, relation.EntityFrom)
    	forStatement := fmt.Sprintf("\tFOR v, e, p IN %v..%v OUTBOUND x %s \n", relation.Depth.Min, relation.Depth.Max, relation.Type)
    
    	// Guarantees that there is no path returned with a duplicate edge
    	// This way there are no cycle paths possible, TODO: more research about this needed
    	optionStmtn := "\tOPTIONS { uniqueEdges: \"path\" }\n"
    
    	vFilterStmnt := ""
    	if relation.EntityTo != -1 {
    		// If there is a to-node, generate the filter statement
    		toConstraints := (*entities)[relation.EntityTo].Constraints
    		vFilterStmnt += *createConstraintStatements(&toConstraints, "v", false)
    	}
    
    	relationFilterStmnt := *createConstraintStatements(&relation.Constraints, "p", true)
    
    	// Dont use a limit on quantifing queries
    	footer := ""
    	if limit != -1 {
    		footer += fmt.Sprintf("\tLIMIT %v \n", limit)
    	}
    
    	if function != nil {
    		footer += "RETURN DISTINCT v )\n"
    	} else {
    		footer += "RETURN DISTINCT p )\n"
    	}
    
    
    	ret := header + forStatement + optionStmtn + vFilterStmnt + relationFilterStmnt + footer
    	return &ret
    }
    
    
    LoLo5689's avatar
    LoLo5689 committed
    /*
    createRelationLetWithOnlyToEntity generates a 'LET' statement for relations with only an 'EntityTo' property
    	relation: *entity.QueryRelationStruct, relation is a relation struct containing the information of a single relation,
    	name: string, is the autogenerated name of the node consisting of "r" + the index of the relation,
    	entities: *[]entity.QueryEntityStruct, is a list of entityStructs that are needed to form the relation LET-statement,
    	Return: *string, a string containing a single LET-statement in AQL
    
    */
    func createRelationLetWithOnlyToEntity(relation *entity.QueryRelationStruct, name string, entities *[]entity.QueryEntityStruct, limit int) *string {
    	header := fmt.Sprintf("LET %v = (\n\tFOR x IN n%v \n", name, relation.EntityTo)
    	forStatement := fmt.Sprintf("\tFOR v, e, p IN %v..%v INBOUND x %s \n", relation.Depth.Min, relation.Depth.Max, relation.Type)
    
    	// Guarantees that there is no path returned with a duplicate edge
    	// This way there are no cycle paths possible, TODO: more research about this needed
    	optionStmtn := "\tOPTIONS { uniqueEdges: \"path\" }\n"
    
    	relationFilterStmnt := *createConstraintStatements(&relation.Constraints, "p", true)
    
    	// Dont use a limit on quantifing queries
    	footer := ""
    	if limit != -1 {
    		footer += fmt.Sprintf("\tLIMIT %v \n", limit)
    	}
    	footer += "RETURN DISTINCT p )\n"
    
    	ret := header + forStatement + optionStmtn + relationFilterStmnt + footer
    	return &ret
    }
    
    
    type variableNameGeneratorToken struct {
    	token int
    }
    
    func newVariableNameGeneratorToken() *variableNameGeneratorToken {
    	v := variableNameGeneratorToken{token: 0}
    	return &v
    }
    
    func variableNameGenerator(vngt *variableNameGeneratorToken) string {
    	result := "variable_" + strconv.Itoa(vngt.token)
    	vngt.token++
    	return result
    }
    
    
    func createTableWithFunctions(functions []entity.QueryFunctionStruct, relations []entity.QueryRelationStruct, entities []entity.QueryEntityStruct) string {
    
    	result := ""
    	v := newVariableNameGeneratorToken()
    
    	for _, function := range functions {
    		for j, relation := range relations {
    			if (function.GroupID == relation.EntityFrom && function.ByID == relation.EntityTo) || (function.GroupID == relation.EntityTo && function.ByID == relation.EntityFrom) {
    				if function.Type == "groupBy" {
    					a := variableNameGenerator(v)
    					b := variableNameGenerator(v)
    					c := variableNameGenerator(v)
    					d := variableNameGenerator(v)
    					e := variableNameGenerator(v)
    					f := variableNameGenerator(v)
    					g := variableNameGenerator(v)
    					h := variableNameGenerator(v)
    					rName := fmt.Sprintf("r%v", j)
    					nName := fmt.Sprintf("n%v", relation.EntityFrom)
    
    					result += "LET " + a + " = (\n\tFOR r IN " +
    						relation.Type + "\n\tLET " + b +
    						" = (\n\t\tFOR c IN " + rName +
    						" \n\t\tFILTER c._id == r._to \n\t\tRETURN c." + function.GroupAttribute + "\n\t) " +
    						"\n\tLET " + c + " = " + b + "[0] \n\tLET " + d + " = (\n\t\t" +
    						"FOR p in " + nName +
    						" \n\t\tFILTER p._id == r._from \n\t\tRETURN p." + function.ByAttribute + "\n\t) " +
    						"\n\tLET " + e + " = " + d + "[0] \n\tRETURN {\n\t\t\"" + f + "\" : " + c + ", \n\t\t" +
    						"\"" + g + "\" : " + e + "\n\t}\n) \n" +
    						"LET function_" + strconv.Itoa(function.TypeID) + " = (\n\tFOR r in " + a + " \n\tCOLLECT c = r." + f + " INTO groups = r." + g + " \n\t\t" +
    						"LET " + h + " = " + function.AppliedModifier + "(groups) \n\t"
    					if len(function.Constraints) > 0 {
    						result += "FILTER " + h + " " + wordsToLogicalSign(function.Constraints[0].MatchType) + " " + function.Constraints[0].Value + " \n\t"
    					}
    					result += "RETURN {\n\t\t" + function.GroupAttribute + " : c, \n\t\t" +
    						function.AppliedModifier + "_" + function.ByAttribute + " : " + h + "\n\t}\n) \n"
    				}
    
    	result += "RETURN {"
    	if len(functions) > 1 {
    		for l := 0; l < len(functions)-1; l++ {
    			result += "function_" + strconv.Itoa(functions[l].TypeID) + "[0], "
    		}
    	}
    	result += "function_" + strconv.Itoa(functions[len(functions)-1].TypeID) + "[0]}"
    	return result
    
    }
    
    func wordsToLogicalSign(word string) string {
    	if word == "LT" {
    		return "<"
    	} else if word == "LTE" {
    		return "<="
    	} else if word == "EQ" {
    		return "=="
    	} else if word == "GTE" {
    		return ">="
    	} else {
    		return ">"
    	}
    }