Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
/*
This program has been developed by students from the bachelor Computer Science at Utrecht University within the Software Project course.
© Copyright Utrecht University (Department of Information and Computing Sciences)
*/
package aql
import (
"errors"
"fmt"
"git.science.uu.nl/graphpolaris/query-conversion/entity"
)
// Version 1.13
/*
ConvertQuery converts an IncomingQueryJSON object into AQL
JSONQuery: *entity.IncomingQueryJSON, the query to be converted to AQL
Returns: *string, the AQL query and a possible error
*/
func (s *Service) ConvertQuery(JSONQuery *entity.IncomingQueryJSON) (*string, error) {
// Check to make sure all indexes exist
// The largest possible id for an entity
largestEntityID := len(JSONQuery.Entities) - 1
// The largest possible id for a relation
largestRelationID := len(JSONQuery.Relations) - 1
// Make sure no entity should be returned that is outside the range of that list
for _, e := range JSONQuery.Return.Entities {
// If this entity references an entity that is outside the range
if e > largestEntityID || e < 0 {
return nil, errors.New("non-existing entity referenced in return")
}
}
// Make sure that no relation mentions a non-existing entity
for _, r := range JSONQuery.Relations {
if r.FromID > largestEntityID && r.FromType == "entity" || r.ToID > largestEntityID && r.ToType == "entity" {
return nil, errors.New("non-exisiting entity referenced in relation")
}
}
// Make sure no non-existing relation is tried to be returned
for _, r := range JSONQuery.Return.Relations {
if r > largestRelationID || r < 0 {
return nil, errors.New("non-existing relation referenced in return")
}
}
// Don't run search if we are getting empty queries from unit tests
var tree []entity.Tree
if len(JSONQuery.Entities) != 0 && len(JSONQuery.Relations) != 0 {
tree = search(JSONQuery, 0)
}
result := createQuery(JSONQuery, tree)
return result, nil
}
/*
createQuery generates a query based on the json file provided
JSONQuery: *entity.IncomingQueryJSON, this is a parsedJSON struct holding all the data needed to form a query,
Return: *string, a string containing the corresponding AQL query and an error
*/
func createQuery(JSONQuery *entity.IncomingQueryJSON, tree []entity.Tree) *string {
currentTree := tree[0]
output := createLetFor("result", fmt.Sprintf("e_%v", currentTree.Self.In.ID), currentTree.Self.In.Name)
for constraint := range currentTree.Self.In.Constraints {
output += createFilter(currentTree.Self.In.Constraints[constraint], fmt.Sprintf("e_%v", currentTree.Self.In.ID))
}
var subNames []string
for i := range currentTree.Children {
subQuery, subName := createQueryRecurse(JSONQuery, tree, currentTree.Children[i])
output += subQuery
subNames = append(subNames, subName)
}
output += createZeroFilter(append(subNames, fmt.Sprintf("e_%v", currentTree.Self.In.ID)))
output += createReturn(fmt.Sprintf("e_%v", currentTree.Self.In.ID), "", subNames)
output += "let nodes = union_distinct(flatten(result[**].nodes),[])\nlet edges = union_distinct(flatten(result[**].rel),[])\nreturn {\"vertices\":nodes,\"edges\":edges}"
return &output
}
func createQueryRecurse(JSONQuery *entity.IncomingQueryJSON, tree []entity.Tree, currentindex int) (string, string) {
currentTree := tree[currentindex]
newNode, oldNode := getTreeNewAndOldNode(currentTree, tree)
output := createLetFor(fmt.Sprintf("e%v", newNode.ID), fmt.Sprintf("e_%v", newNode.ID), newNode.Name)
output += fmt.Sprintf("FOR r%v IN %v", currentTree.Self.Rel.ID, currentTree.Self.Rel.Name)
for constraint := range newNode.Constraints {
output += createFilter(newNode.Constraints[constraint], fmt.Sprintf("e_%v", newNode.ID))
}
for constraint := range currentTree.Self.Rel.QueryConstraintStruct {
output += createFilter(currentTree.Self.Rel.QueryConstraintStruct[constraint], fmt.Sprintf("r%v", currentTree.Self.Rel.ID))
}
if currentTree.Self.Rel.FromID == newNode.ID {
output += fmt.Sprintf("FILTER r%v._from == e_%v._id AND r%v._to == e_%v._id", currentTree.Self.Rel.ID, newNode.ID, currentTree.Self.Rel.ID, oldNode.ID)
} else {
output += fmt.Sprintf("FILTER r%v._from == e_%v._id AND r%v._to == e_%v._id", currentTree.Self.Rel.ID, oldNode.ID, currentTree.Self.Rel.ID, newNode.ID)
}
var subNames []string
for i := range currentTree.Children {
subQuery, subName := createQueryRecurse(JSONQuery, tree, currentTree.Children[i])
output += subQuery
subNames = append(subNames, subName)
}
output += createZeroFilter(append(subNames, fmt.Sprintf("e_%v", newNode.ID), fmt.Sprintf("r%v", currentTree.Self.Rel.ID)))
output += createReturn(fmt.Sprintf("e_%v", newNode.ID), fmt.Sprintf("r%v", currentTree.Self.Rel.ID), subNames)
return output, fmt.Sprintf("e%v", newNode.ID)
}
func getTreeNewAndOldNode(currentTree entity.Tree, tree []entity.Tree) (entity.QueryEntityStruct, entity.QueryEntityStruct) {
if currentTree.Self.In.ID == tree[currentTree.Parent].Self.In.ID || currentTree.Self.In.ID == tree[currentTree.Parent].Self.Out.ID {
return currentTree.Self.Out, currentTree.Self.In
} else {
return currentTree.Self.In, currentTree.Self.Out
}
}
func createLetFor(variableName string, forName string, enumerableName string) string {
return "LET " + variableName + " = (\n\tFOR " + forName + " IN " + enumerableName + "\n"
}
func createFilter(constraint entity.QueryConstraintStruct, filtered string) string {
return "\tFILTER + " + filtered + constraint.Attribute + " " + wordsToLogicalSign(constraint) + " " + constraint.Value + " \n"
}
func createZeroFilter(subNames []string) string {
output := "FILTER"
for i := range subNames {
output += fmt.Sprintf(" length(%v) != 0", subNames[i])
if i < len(subNames)-1 {
output += " AND"
}
}
return output
}
func createReturn(nodeName string, relName string, subNames []string) string {
output := "RETURN {\"nodes\":union_distinct("
for i := range subNames {
output += fmt.Sprintf("flatten(%v[**].nodes), ", subNames[i])
}
output += "[" + nodeName + "]"
if len(subNames) == 0 {
output += ", []"
}
output += "), \"rel\": union_distinct("
for i := range subNames {
output += fmt.Sprintf("flatten(%v[**].rel), ", subNames[i])
}
output += "[" + relName + "]"
if len(subNames) == 0 {
output += ", []"
}
output += ")}\n)\n"
return output
}
func wordsToLogicalSign(element entity.QueryConstraintStruct) string {
var match string
switch element.DataType {
case "string":
switch element.MatchType {
case "NEQ":
match = "!="
case "contains":
match = "LIKE"
case "excludes":
match = "NOT LIKE"
default: //EQ
match = "=="
}
case "int":
switch element.MatchType {
case "NEQ":
match = "!="
case "GT":
match = ">"
case "LT":
match = "<"
case "GET":
match = ">="
case "LET":
match = "<="
default: //EQ
match = "=="
}
default: /*bool*/
switch element.MatchType {
case "NEQ":
match = "!="
default: //EQ
match = "=="
}
}
return match
}