Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
#include "SplitMatrixUpperBound.h"
struct PartWeight {
long part;
long weight;
};
/**
* Comparison functions.
*/
int comparePartWeightsASC (const void *a, const void *b) {
long diff = ((struct PartWeight*)a)->weight - ((struct PartWeight*)b)->weight;
if(diff == 0)
return 0;
return (diff < 0) ? -1 : 1;
} /* end comparePartWeightsASC */
int comparePartWeightsDESC (const void *a, const void *b) {
long diff = ((struct PartWeight*)a)->weight - ((struct PartWeight*)b)->weight;
if(diff == 0)
return 0;
return (diff > 0) ? -1 : 1;
} /* end comparePartWeightsDESC */
int SplitMatrixUpperBound(struct sparsematrix *pT, int P, const struct opts *pOptions) {
/* This function splits the sparse matrix T into P (nearly-)equal parts.
The split is performed by distributing entire columns (or rows) over the parts,
possibly cutting some columns (or rows) to maintain feasibility. Nonzeros may be moved.
This function does not minimize communication volume, but does keep it below the
upper bound (min(m,n)+1)(P-1).
Input: T sparse matrix,
P number of parts to split into,
options the options.
Output: T sparse matrix
The nonzeros of part i are in positions pT->Pstart[i], pT->Pstart[i+1]-1,
where 0<=i<P.
NB: This function works only if the weights are based on the number of nonzeros.
It does not work when:
- the matrix is stored as a symmetric matrix,
- dummy nonzeros with weight 0 are present,
- or weights are based on matrix columns.
*/
long s, t, /* Nonzero iterators */
j, n, /* Column (row) index and number of columns (rows) */
*nzInd, /* Pointer to matrix column (row) indices */
*w, /* w[j] = number of nonzeros in column (row) j */
*lastCol, /* Last column added to a part */
*partWeights, /* Weight of a part */
*partPointer, /* Nonzero iterator per part */
delta, end, targetWeight;
int *p, /* p[j] = part that column (row) j is assigned to */
k, /* General iterator over all parts */
l, /* First dimension iterator in ColWghtDist[] */
q, /* General processor number; also second dimension iterator in ColWghtDist[] */
numMinHeap, numMaxHeap;
struct PartWeight maxWeight, minWeight, *MaxHeapItems, *MinHeapItems;
struct heap MinHeap, MaxHeap;
if (!pT || !pOptions) {
fprintf(stderr, "SplitMatrixUpperBound(): Null arguments!\n");
return FALSE;
}
if ((pT->MMTypeCode[3]=='S' || pT->MMTypeCode[3]=='K' || pT->MMTypeCode[3]=='H') &&
pOptions->SymmetricMatrix_UseSingleEntry == SingleEntYes) {
fprintf(stderr, "SplitMatrixUpperBound(): Cannot be used with symmetric matrices!\n");
return FALSE;
}
if (pT->NrDummies > 0) {
fprintf(stderr, "SplitMatrixUpperBound(): Cannot be used with dummy nonzeros!\n");
return FALSE;
}
if (pT->MMTypeCode[0] == 'W' && pT->NrColWeights > 0) {
fprintf(stderr, "SplitMatrixUpperBound(): Cannot be used with column-weighted matrix!\n");
return FALSE;
}
if(pT->NrProcs < P) {
pT->NrProcs = P;
pT->Pstart = (long *)realloc(pT->Pstart, (pT->NrProcs+1)*sizeof(long));
if(pT->Pstart == NULL) {
fprintf( stderr, "SplitMatrixUpperBound(): Not enough memory.\n" );
return FALSE;
}
}
/****
* Determine direction
****/
if(pT->m < pT->n) {
n = pT->m;
nzInd = pT->i;
}
else {
n = pT->n;
nzInd = pT->j;
}
/* Compute number of nonzeros in a column (row) */
w = (long *)calloc(n, sizeof(long));
if(w == NULL) {
fprintf( stderr, "SplitMatrixUpperBound(): Not enough memory.\n" );
return FALSE;
}
for(t=0; t<pT->NrNzElts; ++t) {
++w[nzInd[t]];
}
/****
* Create min heap of part weights
****/
MinHeapItems = (struct PartWeight*)malloc(P*sizeof(struct PartWeight));
if(MinHeapItems == NULL) {
fprintf( stderr, "SplitMatrixUpperBound(): Not enough memory.\n" );
return FALSE;
}
HeapInit(&MinHeap, sizeof(struct PartWeight), comparePartWeightsDESC);
for(k=0; k<P; ++k) {
MinHeapItems[k].part = k;
MinHeapItems[k].weight = 0;
}
Heapify(&MinHeap, MinHeapItems, P);
/****
* Assign columns (rows) to parts
****/
p = (int *)malloc(n * sizeof(int));
lastCol = (long *)malloc(P * sizeof(long));
if(p == NULL || lastCol == NULL) {
fprintf( stderr, "SplitMatrixUpperBound(): Not enough memory.\n" );
return FALSE;
}
for(k=0; k<P; ++k) {
lastCol[k] = -1;
}
for(j=0; j<n; ++j) {
/* Assign column (row) j to part minWeight.part with currently least weight. */
HeapPeek(&MinHeap, &minWeight);
minWeight.weight += w[j];
p[j] = minWeight.part;
lastCol[minWeight.part] = j;
HeapReplace(&MinHeap, &minWeight, NULL);
}
/****
* Compute surpluses and shortages per part and store them in heaps, to be able to determine where we should cut columns (rows).
* Also register weights of the columns (rows) that will be cut, to be able to keep track of how we want to cut them.
* We reuse the variable MinHeap, which now will contain shortages, while MaxHeap will contain surpluses.
****/
HeapInit(&MaxHeap, sizeof(struct PartWeight), comparePartWeightsASC);
MaxHeapItems = (struct PartWeight*)malloc(P*sizeof(struct PartWeight));
long **ColWghtDist = (long **)malloc(P * sizeof(long*));
long *_ColWghtDist = (long *)calloc(P * P, sizeof(long));
if(MaxHeapItems == NULL || ColWghtDist == NULL || _ColWghtDist == NULL) {
fprintf( stderr, "SplitMatrixUpperBound(): Not enough memory.\n" );
return FALSE;
}
for(l=0; l<P; ++l) {
ColWghtDist[l] = &(_ColWghtDist[l*P]);
}
targetWeight = ceil(pT->NrNzElts / (double)P);
numMinHeap = 0;
numMaxHeap = 0;
l = 0;
for(k=0; k<P; ++k) {
/* Here we use the fact that the Heap data structure
* just permutes all entries, hence we can just iterate over
* these entries as if it were an array (which it
* (MinHeapItems) actually still is). We could also iteratively
* call HeapPop(), but this would be O(P log(P)) while just
* iterating over the array is O(P).
*/
if(MinHeapItems[k].weight > targetWeight) {
/* This part has a surplus */
MaxHeapItems[numMaxHeap].part = MinHeapItems[k].part;
MaxHeapItems[numMaxHeap].weight = MinHeapItems[k].weight - targetWeight;
++numMaxHeap;
/* Mark last column as cut and link it to ColWghtDist[l] */
q = MinHeapItems[k].part;
j = lastCol[q];
p[j] = -l-1;
ColWghtDist[l][q] = w[j];
++l;
}
else if(MinHeapItems[k].weight < targetWeight) {
/* This part has a shortage */
MinHeapItems[numMinHeap].part = MinHeapItems[k].part;
MinHeapItems[numMinHeap].weight = MinHeapItems[k].weight - targetWeight;
++numMinHeap;
}
}
MinHeapItems = (struct PartWeight*)realloc(MinHeapItems, numMinHeap*sizeof(struct PartWeight));
MaxHeapItems = (struct PartWeight*)realloc(MaxHeapItems, numMaxHeap*sizeof(struct PartWeight));
Heapify(&MinHeap, MinHeapItems, numMinHeap);
Heapify(&MaxHeap, MaxHeapItems, numMaxHeap);
free(w); w = NULL;
/****
* Cut columns (rows) where necessary, until perfect balance is achieved.
* By cutting a column, we can move weight from a surplus part to a shortage part.
****/
while(MaxHeap.numItems > 0) {
if(MinHeap.numItems < 1) {
fprintf( stderr, "SplitMatrixUpperBound(): Corrupt data.\n" );
return FALSE;
}
HeapPeek(&MinHeap, &minWeight); /* minWeight.weight < 0 */
HeapPeek(&MaxHeap, &maxWeight); /* maxWeight.weight > 0 */
/* Determine the weight (delta) to move */
if(maxWeight.weight < -minWeight.weight) {
delta = maxWeight.weight;
/* Remove maxWeight, reduce minWeight */
HeapPop(&MaxHeap, NULL);
minWeight.weight += maxWeight.weight;
HeapReplace(&MinHeap, &minWeight, NULL);
}
else if(maxWeight.weight > -minWeight.weight) {
delta = -minWeight.weight;
/* Remove minWeight, reduce maxWeight */
HeapPop(&MinHeap, NULL);
maxWeight.weight += minWeight.weight;
HeapReplace(&MaxHeap, &maxWeight, NULL);
}
else { /* max == min */
delta = maxWeight.weight;
HeapPop(&MaxHeap, NULL);
HeapPop(&MinHeap, NULL);
}
/* Keep track of the cut */
l = -p[lastCol[maxWeight.part]]-1;
ColWghtDist[l][maxWeight.part] -= delta;
ColWghtDist[l][minWeight.part] = delta;
}
free(lastCol); lastCol = NULL;
HeapDestroy(&MaxHeap); MaxHeapItems = NULL; /* Also free()s MaxHeapItems */
/* cutColPrtPtr[l] := the first (lowest) index q for which ColWghtDist[l][q] is nonzero. */
int *cutColPrtPtr = (int *)malloc(numMaxHeap * sizeof(int));
if(cutColPrtPtr == NULL) {
fprintf( stderr, "SplitMatrixUpperBound(): Not enough memory.\n" );
return FALSE;
}
for(l=0; l<numMaxHeap; ++l) {
cutColPrtPtr[l] = 0;
for(q=0; q<P; ++q) {
if(ColWghtDist[l][q] > 0) {
break;
}
++cutColPrtPtr[l];
}
}
/* At this point:
* p[j] = q>0 if column j is completely assigned to part q
* q<0 if column j cut. The distribution data is available in ColWghtDist[-q-1]
*/
/****
* Compute total part weights and build Pstart variable
****/
partWeights = (long *)malloc(P * sizeof(long));
partPointer = (long *)malloc(P * sizeof(long));
if(partWeights == NULL || partPointer == NULL) {
fprintf( stderr, "SplitMatrixUpperBound(): Not enough memory.\n" );
return FALSE;
}
for(k=0; k<P; ++k) {
partWeights[k] = targetWeight;
}
for(k=0; k<MinHeap.numItems; ++k) {
/* Here again we use the fact that MinHeapItems is just
* a valid (permuted) array to iterate over
*/
partWeights[MinHeapItems[k].part] += MinHeapItems[k].weight;
}
HeapDestroy(&MinHeap); MinHeapItems = NULL; /* Also free()s MinHeapItems */
/* Build Pstart */
pT->Pstart[k] = partPointer[0] = 0;
for(k=1; k<P; ++k) {
pT->Pstart[k] = partPointer[k] = partPointer[k-1]+partWeights[k-1];
}
pT->Pstart[P] = partPointer[P-1]+partWeights[P-1];
/* Sanity check */
if(pT->Pstart[P] != pT->NrNzElts) {
fprintf( stderr, "SplitMatrixUpperBound(): Corrupt sum.\n" );
return FALSE;
}
free(partWeights); partWeights = NULL;
/****
* Sort nonzeros by part number in order to apply the computed partitioning
****/
for(k=0; k<P; ++k) {
end = pT->Pstart[k+1];
while(partPointer[k]<end) {
/* We move the nonzero at position s to part q */
s = partPointer[k];
q = p[nzInd[s]];
if(q < 0) {
/* We have a cut column (row), so determine q from the cut data */
l = -q-1;
if(ColWghtDist[l][k] > 0) {
/* We may still add this nonzero to the current part.
* Doing this, we prevent 1 swap.
*/
q = k;
}
else {
/* We should add this nonzero to an other part. */
q = cutColPrtPtr[l];
if(ColWghtDist[l][q] == 0) {
fprintf( stderr, "SplitMatrixUpperBound(): Unexpected empty column part. %d %d\n", l, q );
return FALSE;
}
}
--ColWghtDist[l][q];
/* Update cutColPrtPtr to point to a part we may still assign nonzeros to */
if(q == cutColPrtPtr[l]) {
while(cutColPrtPtr[l] < P && ColWghtDist[l][cutColPrtPtr[l]] == 0) {
++cutColPrtPtr[l];
}
}
}
/* else, column (row) nzInd[s] is completely assigned to part q */
/* If nonzero is already in the right part, we do not need to swap */
if(k == q) {
++partPointer[k];
continue;
}
/* ('Else',) The nonzero needs to be swapped to the target part */
t = partPointer[q];
#ifdef INFO2
if(t > pT->Pstart[q+1]) {
fprintf( stderr, "SplitMatrixUpperBound(): Corrupt target pointer.\n" );
return FALSE;
}
#endif
SwapLong(pT->i, s, t);
SwapLong(pT->j, s, t);
if (pT->MMTypeCode[2] != 'P')
SwapDouble(pT->ReValue, s, t);
if (pT->MMTypeCode[2] == 'C')
SwapDouble(pT->ImValue, s, t);
/* Update partPointer to point to the next nonzero not belonging to q */
do {
++partPointer[q];
}
while(partPointer[q] < pT->Pstart[q+1] && p[nzInd[partPointer[q]]] == q);
}
}
#ifdef INFO2
/* Check part integrity */
for(k=0; k<P; ++k) {
if(partPointer[k] != pT->Pstart[k+1]) {
fprintf( stderr, "SplitMatrixUpperBound(): Corrupt result.\n" );
return FALSE;
}
}
#endif
free(p);
free(cutColPrtPtr);
free(ColWghtDist);
free(_ColWghtDist);
free(partPointer);
#ifdef INFO2
if(!CheckUpperBoundSolution(pT)) {
return FALSE;
}
#endif
/* Compute new lambdas */
InitNprocs(pT, COL, pT->RowLambda);
InitNprocs(pT, ROW, pT->ColLambda);
return TRUE;
} /* end SplitMatrixUpperBound */
int CheckUpperBoundSolution(struct sparsematrix *pT) {
/* This function checks whether the distributed matrix computed by
SplitMatrixUpperBound() is valid. I.e., it checks whether
the computed solution has a fairly distributed work load and
communication volume not higher than the upper bound.
Input: T sparse matrix
Output: TRUE if the solution is valid, FALSE otherwise
*/
int P = pT->NrProcs;
/* Calculate weights */
long Wmax = 0, weight;
for(int q=0; q<P; ++q) {
weight = pT->Pstart[q+1] - pT->Pstart[q];
if(weight > Wmax) {
Wmax = weight;
}
}
if(Wmax > ceil(pT->NrNzElts/(double)P)) {
#ifdef INFO2
fprintf( stderr, "CheckUpperBoundSolution(): Invalid imbalance result.\n" );
#endif
return FALSE;
}
/* Calculate communication volume */
long ComVol1, ComVol2, tmp;
CalcCom(pT, NULL, (pT->m < pT->n)?ROW:COL, &ComVol1, &tmp, &tmp, &tmp, &tmp);
CalcCom(pT, NULL, (pT->m < pT->n)?COL:ROW, &ComVol2, &tmp, &tmp, &tmp, &tmp);
long n = (pT->m < pT->n)?pT->m:pT->n;
if(ComVol1 > n*(P-1) || ComVol2 > P-1) {
#ifdef INFO2
fprintf( stderr, "CheckUpperBoundSolution(): Invalid communication result.\n" );
#endif
return FALSE;
}
return TRUE;
} /* end CheckUpperBoundSolution */