Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
#include "testHelper_DisconnectedMatrix.h"
#define min(x,y) ( ( (x)<(y) ) ? (x) : (y) )
#define max(x,y) ( ( (x)>(y) ) ? (x) : (y) )
/**
* Construct a random (disconnected) matrix.
*
* Input:
* symmetric : Whether the matrix should be symmetric
* dummies : Whether the matrix should contain dummy diagonal nonzeros
* colWeights : Whether the matrix should be weighted with column weights
* numCompMin : Minimum number of connected components
* numCompMax : Maximum number of connected components
*
* Output:
* pA : The generated matrix
* pNumComponents : The number of components generated
* pComponent_m : Height of each connected component
* pComponent_n : Width of each connected component
* pComponent_weights: Weight of each connected component (effective number of nonzeros or sum of column weights)
* p_i_to_I : I = p_i_to_I[cmpnnt][i] is the row index I in the large matrix which corresponds to the row index i in component cmpnnt
* p_j_to_J : J = p_j_to_J[cmpnnt][j] is the column index J in the large matrix which corresponds to the column index j in component cmpnnt
*
* Returned memory allocations (to be freed with DestructDisconnectedMatrix()):
* pA:
* pA->i O(pA->m)
* pA->j O(pA->n)
* pA->Pstart O(2+1)
* pA->dummy O(pA->m) (only if dummy == TRUE)
* pA->ColWeights O(pA->n) (only if colWeights == TRUE)
* pComponent_m: O(numComponents)
* pComponent_n: O(numComponents) (only if symmetric == FALSE)
* pComponent_weights: O(numComponents)
* p_i_to_I: O(numComponents)
* p_i_to_I[0]: O(pA->m)
* p_j_to_J: O(numComponents) (only if symmetric == FALSE)
* p_j_to_J[0]: O(pA->n) (only if symmetric == FALSE)
*/
void ConstructDisconnectedMatrix(struct sparsematrix *pA, int symmetric, int dummies, int colWeights,
long numCompMin, long numCompMax, long *pNumComponents,
long **pComponent_m, long **pComponent_n, long **pComponent_weights,
long ***p_i_to_I, long ***p_j_to_J) {
long i, j, I, J, m, n;
long cmpnnt;
/* Determine number of components (submatrices), the dimensions of each submatrix, and their numbers of nonzeros */
long numComponents = Random1(numCompMin, numCompMax);
long *component_dummies = (long *)malloc(numComponents*sizeof(long));
long *component_m = (long *)malloc(numComponents*sizeof(long));
long *component_n;
if(symmetric || dummies) {
component_n = component_m;
}
else {
component_n = (long *)malloc(numComponents*sizeof(long));
}
long *component_nnz = (long *)malloc(numComponents*sizeof(long));
if (component_dummies == NULL || component_m == NULL || component_n == NULL || component_nnz == NULL) {
printf("Error\n");
exit(1);
}
long M=0, N=0, NNZ=0, totalDummies = 0;
for(cmpnnt=0; cmpnnt<numComponents; ++cmpnnt) {
/* component_nnz[] should uniquely identify a component; i.e. all components should have different nnz.
* This helps when identifying the components in test functions.
*/
int present;
long nonDummyDiagNonZeros[2];
long full_nnz[2];
do {
/* The dimensions should at least be above 10, such that generating the
* matrices won't take too long (or, when below 5, may become impossible).
* Additionally, we should have enough freedom to ensure each component has
* a unique number of nonzeros
*/
component_m[cmpnnt] = Random1(14, 20) + Random1(numComponents, numCompMax);
if(!symmetric && !dummies) {
component_n[cmpnnt] = Random1(14, 20) + Random1(numComponents, numCompMax);
}
long maxdim = (component_m[cmpnnt]>component_n[cmpnnt]) ? component_m[cmpnnt] : component_n[cmpnnt];
/* Determine number of nonzeros */
if(symmetric) {
component_nnz[cmpnnt] = 2*maxdim-1 + Random1(maxdim/2, maxdim);
}
else {
component_nnz[cmpnnt] = 2*maxdim-1 + Random1(maxdim, 2*maxdim);
}
component_dummies[cmpnnt] = dummies ? Random1(maxdim/4, 3*maxdim/4) : 0;
component_nnz[cmpnnt] -= component_dummies[cmpnnt];
/* Check that this number of non-dummy nonzeros is unique */
present = 0;
for(i=0; i<cmpnnt; ++i) {
if(symmetric) {
nonDummyDiagNonZeros[0] = component_m[cmpnnt] - component_dummies[cmpnnt];
full_nnz[0] = (component_nnz[cmpnnt]-nonDummyDiagNonZeros[0])*2 + nonDummyDiagNonZeros[0];
nonDummyDiagNonZeros[1] = component_m[i] - component_dummies[i];
full_nnz[1] = (component_nnz[i]-nonDummyDiagNonZeros[1])*2 + nonDummyDiagNonZeros[1];
if(full_nnz[0] == full_nnz[1]) {
present = 1;
break;
}
}
else {
if(component_nnz[i] == component_nnz[cmpnnt]) {
present = 1;
break;
}
}
}
}
while(present);
/* Update totals */
M += component_m[cmpnnt];
N += component_n[cmpnnt];
NNZ += component_nnz[cmpnnt];
totalDummies += component_dummies[cmpnnt];
}
/* Allocate space for a mapping from submatrix indices (i,j) to global indices (I,J) */
long *i_to_I_alloc, *j_to_J_alloc, **i_to_I, **j_to_J;
i_to_I_alloc = (long *)malloc(M*sizeof(long));
i_to_I = (long **)malloc(numComponents*sizeof(long *));
if(symmetric || dummies) {
j_to_J_alloc = i_to_I_alloc;
j_to_J = i_to_I;
}
else {
j_to_J_alloc = (long *)malloc(N*sizeof(long));
j_to_J = (long **)malloc(numComponents*sizeof(long *));
}
if (i_to_I_alloc == NULL || i_to_I == NULL || j_to_J_alloc == NULL || j_to_J == NULL) {
printf("Error\n");
exit(1);
}
i_to_I[0] = i_to_I_alloc;
if(!symmetric && !dummies)
j_to_J[0] = j_to_J_alloc;
for(cmpnnt=1; cmpnnt<numComponents; ++cmpnnt) {
i_to_I[cmpnnt] = &i_to_I[cmpnnt-1][component_m[cmpnnt-1]];
if(!symmetric && !dummies)
j_to_J[cmpnnt] = &j_to_J[cmpnnt-1][component_n[cmpnnt-1]];
}
/* Create a permutation of the identity */
for(I=0; I<M; ++I) {
i_to_I_alloc[I] = I;
}
if(!symmetric && !dummies) {
for(J=0; J<N; ++J) {
j_to_J_alloc[J] = J;
}
}
RandomPermute(i_to_I_alloc, NULL, NULL, NULL, 0, M-1);
if(!symmetric && !dummies)
RandomPermute(j_to_J_alloc, NULL, NULL, NULL, 0, N-1);
/* Set up matrix struct */
MMSparseMatrixInit(pA);
pA->m = M;
pA->n = N;
pA->NrNzElts = NNZ + totalDummies;
pA->NrProcs = 2; /* maximum number of parts */
pA->i = (long *)malloc(pA->NrNzElts*sizeof(long));
pA->j = (long *)malloc(pA->NrNzElts*sizeof(long));
pA->Pstart = (long *)malloc((pA->NrProcs+1)*sizeof(long));
if (pA->i == NULL || pA->j == NULL || pA->Pstart == NULL) {
printf("Error\n");
exit(1);
}
if(colWeights)
pA->MMTypeCode[0]='W'; /* weighted matrix */
else
pA->MMTypeCode[0]='M'; /* normal matrix */
pA->MMTypeCode[1]='C'; /* coordinate scheme */
pA->MMTypeCode[2]='P'; /* pattern only */
if(symmetric)
pA->MMTypeCode[3]='S'; /* symmetric */
else
pA->MMTypeCode[3]='G'; /* general, no symmetry */
pA->NrDummies = 0;
pA->dummy = NULL;
pA->Pstart[0] = 0;
pA->Pstart[1] = pA->NrNzElts;
pA->Pstart[2] = pA->NrNzElts;
pA->NrDummies = totalDummies;
if(dummies) {
pA->dummy = (int *)malloc(pA->m*sizeof(int));
if (pA->dummy == NULL) {
printf("Error\n");
exit(1);
}
}
/* Generate each component */
long maxdim, t = 0, t2, T, nnzFilled, dummiesUsed;
for(cmpnnt=0; cmpnnt<numComponents; ++cmpnnt) {
m = component_m[cmpnnt];
n = component_n[cmpnnt];
maxdim = (m>n) ? m : n;
nnzFilled = 0;
dummiesUsed = 0;
T = t;
/* Make sure we create connected components */
if(Random1(0,1) == 0) {
/* Here, we generate a submatrix with nonzero diagonal
* and one nonzero subdiagonal. This way, each row is
* connected with the next, and hence all are connected.
*/
for(i=0; i<maxdim; ++i) {
I = i_to_I[cmpnnt][i%m];
J = j_to_J[cmpnnt][i%n];
pA->i[t] = symmetric ? max(I,J) : I;
pA->j[t] = symmetric ? min(I,J) : J;
++t;
++nnzFilled;
if(dummies) {
pA->dummy[I] = (dummiesUsed < component_dummies[cmpnnt]) ? 1 : 0;
if(pA->dummy[I] == 1) {
++dummiesUsed;
--nnzFilled;
}
}
if(i < maxdim-1) {
I = i_to_I[cmpnnt][(i+1)%m];
J = j_to_J[cmpnnt][i%n];
pA->i[t] = symmetric ? max(I,J) : I;
pA->j[t] = symmetric ? min(I,J) : J;
++t;
++nnzFilled;
}
}
}
else {
/* Here, we generate a submatrix with nonzero diagonal
* and a dense first column. This way, all rows are
* connected with the first column, hence all rows and
* columns are connected.
*/
for(i=0; i<maxdim; ++i) {
I = i_to_I[cmpnnt][i%m];
J = j_to_J[cmpnnt][i%n];
pA->i[t] = symmetric ? max(I,J) : I;
pA->j[t] = symmetric ? min(I,J) : J;
++t;
++nnzFilled;
if(dummies) {
pA->dummy[I] = (dummiesUsed < component_dummies[cmpnnt]) ? 1 : 0;
if(pA->dummy[I] == 1) {
++dummiesUsed;
--nnzFilled;
}
}
if(i > 0) {
I = i_to_I[cmpnnt][i%m];
J = j_to_J[cmpnnt][0];
pA->i[t] = symmetric ? max(I,J) : I;
pA->j[t] = symmetric ? min(I,J) : J;
++t;
++nnzFilled;
}
}
}
/* Fill the submatrix until the desired number of nonzeros */
while(nnzFilled < component_nnz[cmpnnt]) {
i = Random1(0, m-1);
j = Random1(0, n-1);
I = i_to_I[cmpnnt][i%m];
J = j_to_J[cmpnnt][j%n];
I = symmetric ? max(I,J) : I;
J = symmetric ? min(I,J) : J;
/* Make sure this element is not already nonzero.
* This search is expensive in terms of complexity, but
* as we are just testing, this does not matter very much.
*/
int present = 0;
for(t2=T; t2<t; ++t2) {
if(pA->i[t2] == I && pA->j[t2] == J) {
present = 1;
break;
}
}
if(present) {
continue;
}
pA->i[t] = I;
pA->j[t] = J;
++t;
++nnzFilled;
}
}
if(symmetric) {
/* Update nonzero count, as we now only have counted the elements in the lower-left triangle */
NNZ = 0;
long nonDummyDiagNonZeros;
for(cmpnnt=0; cmpnnt<numComponents; ++cmpnnt) {
nonDummyDiagNonZeros = component_m[cmpnnt] - component_dummies[cmpnnt];
component_nnz[cmpnnt] = (component_nnz[cmpnnt]-nonDummyDiagNonZeros)*2 + nonDummyDiagNonZeros;
NNZ += component_nnz[cmpnnt];
}
}
/* Return value pointers */
*pNumComponents = numComponents;
*pComponent_m = component_m;
*pComponent_n = component_n;
*pComponent_weights = component_nnz;
*p_i_to_I = i_to_I;
*p_j_to_J = j_to_J;
if(colWeights) {
/* Reassign weights based on columns */
long *component_weights = *pComponent_weights;
pA->NrColWeights = N;
pA->ColWeights = malloc( N * sizeof( long ) );
if (pA->ColWeights == NULL) {
printf("Error\n");
exit(1);
}
for(J=0; J<N; ++J) {
pA->ColWeights[J] = Random1(20, 50);
}
for(cmpnnt=0; cmpnnt<numComponents; ++cmpnnt) {
component_weights[cmpnnt] = 0;
for(j=0; j<component_n[cmpnnt]; ++j) {
component_weights[cmpnnt] += pA->ColWeights[j_to_J[cmpnnt][j]];
}
/* Make sure each component has a unique weight, to be able to use it as identification */
while(TRUE) {
int found = FALSE;
for(i=0; i<cmpnnt; ++i) {
if(component_weights[cmpnnt] == component_weights[i]) {
found = TRUE;
++pA->ColWeights[j_to_J[cmpnnt][0]];
++component_weights[cmpnnt];
break;
}
}
if(!found) {
break;
}
}
}
}
free(component_dummies);
} /* end ConstructDisconnectedMatrix */
/**
* Free memory for a matrix constructed with ConstructDisconnectedMatrix().
* See ConstructDisconnectedMatrix() for details on the parameters.
*/
void DestructDisconnectedMatrix(struct sparsematrix *pA, int symmetric, int dummies, int colWeights,
long **pComponent_m, long **pComponent_n, long **pComponent_weights,
long ***p_i_to_I, long ***p_j_to_J) {
free(*pComponent_weights);
free(*pComponent_m);
free(*p_i_to_I[0]);
free(*p_i_to_I);
if(!symmetric && !dummies) {
free(*pComponent_n);
free(*p_j_to_J[0]);
free(*p_j_to_J);
}
MMSparseMatrixFreeMemory(pA);
} /* end DestructDisconnectedMatrix */