main.py 11.1 KB
Newer Older
1 2 3 4
from flask import Flask, jsonify, request
import pandas as pd
import numpy as np
from flask_cors import CORS
5
from collections import defaultdict, Counter
6
from time import time
7 8 9
import os.path
import json
from sklearn import preprocessing
10
import orjson
11
import dask.dataframe as dd
Kruyff,D.L.W. (Dylan)'s avatar
Kruyff,D.L.W. (Dylan) committed
12 13
import bigwig
import bbi
14 15
from bitarray import bitarray
import _ucrdtw
16
from scipy.sparse import dia_matrix
Kruyff,D.L.W. (Dylan)'s avatar
Kruyff,D.L.W. (Dylan) committed
17

18
reload = True
19 20 21 22

app = Flask(__name__)
CORS(app)

23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
def calculate_signatures_random_weights(data, window_size=None, hash_size=None, hash_function=None):
    if hash_function is None:
        hash_function = np.random.uniform(-1, 1, size=(window_size, hash_size))
    signatures_bool = np.dot(data, hash_function) > 0
    if signatures_bool.ndim == 1:
        return ''.join(['1' if x else '0' for x in signatures_bool])
    return [''.join(['1' if x else '0' for x in lst]) for lst in signatures_bool], hash_function


def calculate_signatures_cumsum_weights(data, window_size=None, hash_size=None, hash_function=None):
    if hash_function is None:
        hash_function = np.array([np.cumsum(np.random.uniform(-1, 1, window_size)) for _ in range(hash_size)]).transpose()
    signatures_bool = np.dot(data, hash_function) > 0
    signatures_int = np.packbits(signatures_bool)
    return signatures_int.tolist(), hash_function

39
def calculate_signatures_new(data, window_size=None, hash_size=None, hash_function=None):
40 41
    if hash_function is None:
        hash_function = np.array([np.cumsum(np.random.uniform(-1, 1, window_size)) for _ in range(hash_size)]).transpose()
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
    if len(data) == len(np.array(hash_function)[:, 0]):
        signatures_bool = np.dot(data, hash_function) > 0
        output = signatures_bool.astype(int)[0]
        print(output)
        return output
    print('starting hashing')
    t0 = time()
    all_signatures = []
    batch_size = 20
    data = data.transpose()
    temp = np.zeros((batch_size, window_size + batch_size - 1))
    for h in range(hash_size):
        for i in range(batch_size):
            temp[i, i:i + window_size] = hash_function[:, h]
        print('first: ' + str(time() - t0))
        signatures_bool = [np.dot(temp, data[i:i + window_size + batch_size - 1]) > 0 for i in range(0, len(data) - window_size, batch_size)]
        # signatures_bool = []
        # for i in range(0, len(data) - window_size, batch_size):
        #     if i % 1000000 == 0:
        #         print(i)
        #     signatures_bool.append(np.dot(temp, data[i:i + window_size + batch_size - 1]) > 0)
        print('second: ' + str(time() - t0))
        all_signatures.append(np.array(signatures_bool).flatten().astype(int))
    print('done')
    signatures_int = np.packbits(np.stack(np.array(all_signatures), axis=1), axis=0).flatten()
67 68
    return signatures_int.tolist(), hash_function

69 70

lsh_function = calculate_signatures_new
71

72 73 74 75 76 77
@app.route('/', methods=['GET'])
def index():
    return "hi"

@app.route('/read-data', methods=['GET'])
def read_data():
78
    t0 = time()
Kruyff,D.L.W. (Dylan)'s avatar
Kruyff,D.L.W. (Dylan) committed
79 80 81 82
    size = bbi.chromsizes('test.bigWig')['chr1']
    bins = 100000
    data = bigwig.get('test.bigWig', 'chr1', 0, size, bins)
    print(data.shape)
83
    response = {
Kruyff,D.L.W. (Dylan)'s avatar
Kruyff,D.L.W. (Dylan) committed
84 85
        "index": list(range(0, size, int(size/(bins)))),
        "values": data.tolist()
86
    }
Kruyff,D.L.W. (Dylan)'s avatar
Kruyff,D.L.W. (Dylan) committed
87
    response = orjson.dumps(response)
88
    print('Data read: ' + str(time()-t0))
89 90 91 92
    # query = data[12000:24000]
    # loc, dist = _ucrdtw.ucrdtw(data, query, 0.05, True)
    # print(data[loc:loc+120])
    # print('found query: ' + str(loc) + '[' + str(time()-t0) + ']')
93 94 95 96
    return response

@app.route('/create-windows', methods=['POST'])
def create_windows():
97
    t0 = time()
Kruyff,D.L.W. (Dylan)'s avatar
Kruyff,D.L.W. (Dylan) committed
98
    if reload:
99 100
        raw_data = request.json
        window_size = int(raw_data['parameters']["windowsize"])
101 102 103 104
        chromsize = bbi.chromsizes('test.bigWig')['chr1']
        step_size = chromsize / 10000
        data = bigwig.get('test.bigWig', 'chr1', 0, chromsize, 20000000)
        data = (data - np.min(data))/np.ptp(data)
Kruyff,D.L.W. (Dylan)'s avatar
Kruyff,D.L.W. (Dylan) committed
105
        print(data.shape)
106
        np.save('processed-data', data)
107
    print('Windows created: ' + str(time()-t0))
108
    return '1'
109 110 111

@app.route('/create-tables', methods=['POST'])
def create_tables():
112 113 114 115 116
    data = np.load('processed-data.npy')
    raw_data = orjson.loads(request.data)
    window_size = int(raw_data['parameters']["windowsize"])
    hash_size = int(raw_data['parameters']["hashsize"])
    table_size = int(raw_data['parameters']["tablesize"])
117

118
    t0 = time()
119 120 121 122 123 124 125 126
    hash_functions, tables = lsh(data, window_size, hash_size, table_size)

    response = {}
    for table_index in range(table_size):
        response[str(table_index)] = {
            "hash": hash_functions[table_index],
            "entries": tables[table_index]
        }
127 128
    response = jsonify(response)
    print('done: ' + str(time()-t0))
129 130 131 132 133
    return response


def lsh(data, window_size, hash_size, table_size):
    tables_hash_function = []
134
    tables = []
135 136
    print(data.shape)

137
    for index in range(table_size):
138
        signatures, hash_function = lsh_function(data, window_size=window_size, hash_size=hash_size)
139 140 141 142
        print('creating dictionary')
        table = defaultdict(list)
        for v, k in enumerate(signatures):
            table[k].append(v)
143
        tables.append(table)
144
        tables_hash_function.append(hash_function.tolist())
145

146 147 148 149 150 151 152 153 154 155 156 157 158 159
    hash_functions = tables_hash_function
    return hash_functions, tables


@app.route('/similarity', methods=['POST'])
def similarity():
    t0 = time()
    raw_data = orjson.loads(request.data)
    window = raw_data['query']
    tables = raw_data["tables"]
    neighbours = []
    output = defaultdict(list)

    for t in tables.values():
160
        signature = lsh_function(window, hash_function=t["hash"])
161
        neighbours.extend(t["entries"][str(signature)])
162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
    neighbours_with_frequency = dict(Counter(neighbours))
    for index, frequency in neighbours_with_frequency.items():
        output[str(frequency)].append(index)

    response = orjson.dumps(output)
    print("Similarity done: " + str(time()-t0))
    return response

@app.route('/update', methods=['POST'])
def update():
    t0 = time()
    raw_data = orjson.loads(request.data)
    data = np.load('processed-data.npy')
    label_data = raw_data["labelData"]
    tables = raw_data["tables"]
    window = raw_data["query"]
    window_size = int(raw_data['parameters']["windowsize"])
    hash_size = int(raw_data['parameters']["hashsize"])
    table_size = int(raw_data['parameters']["tablesize"])
    new_tables = []

    correct_indices = [int(index) for index, value in label_data.items() if value is True]
    incorrect_indices = [int(index) for index, value in label_data.items() if value is False]

    for t in tables.values():
        valid = True
188
        signature = lsh_function(window, hash_function=t['hash'])
189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
        neighbours = t["entries"][signature]
        for index in correct_indices:
            if index not in neighbours:
                valid = False
                break
        for index in incorrect_indices:
            if index in neighbours:
                valid = False
                break
        if valid:
            new_tables.append(t)

    for index in range(table_size - len(new_tables)):
        entries = defaultdict(list)
        t1 = time()
        while True:
205 206
            correct_signatures, hash_function = lsh_function(data[correct_indices], window_size=window_size, hash_size=hash_size)
            incorrect_signatures, _ = lsh_function(data[incorrect_indices], hash_function=hash_function)
207 208
            if correct_signatures.count(correct_signatures[0]) == len(correct_signatures) and incorrect_signatures.count(correct_signatures[0]) == 0:
                break
209
        signatures, _ = lsh_function(data, hash_function=hash_function)
210 211 212 213 214 215 216 217 218
        for i in range(len(signatures)):
            entries[signatures[i]].append(i)
        print(str(index) + ": " + str(time() - t1))
        new_tables.append({
            "hash": hash_function.tolist(),
            "entries": entries
        })

    print('Update time: ' + str(time() - t0))
219
    response = {}
220 221 222 223
    for table_index in range(len(new_tables)):
        response[table_index] = {
            "hash": new_tables[table_index]["hash"],
            "entries": new_tables[table_index]["entries"]
224
        }
225
    response = jsonify(response)
226 227
    return response

228 229
@app.route('/query', methods=['POST'])
def query():
230
    t0 = time()
231
    raw_data = orjson.loads(request.data)
232
    window = raw_data['window']
Kruyff,D.L.W. (Dylan)'s avatar
Kruyff,D.L.W. (Dylan) committed
233
    if isinstance(window, int):
234
        output = np.load('processed-data.npy')[window:window+12000]
Kruyff,D.L.W. (Dylan)'s avatar
Kruyff,D.L.W. (Dylan) committed
235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
        response = orjson.dumps(output.tolist())
        print("Query done: " + str(time() - t0))
        return response
    else :
        output = preprocessing.minmax_scale(window, (-1, 1))
        response = orjson.dumps(output.tolist())
        print("Query done: " + str(time()-t0))
        return response

@app.route('/window', methods=['POST'])
def window():
    t0 = time()
    raw_data = orjson.loads(request.data)
    indices = raw_data['indices']
    output = np.load('processed-data.npy')[indices]
250
    response = orjson.dumps(output.tolist())
Kruyff,D.L.W. (Dylan)'s avatar
Kruyff,D.L.W. (Dylan) committed
251
    print("Query done: " + str(time() - t0))
252 253 254 255 256 257 258 259 260 261
    return response

@app.route('/average-progress', methods=['POST'])
def average_progress():
    t0 = time()
    raw_data = orjson.loads(request.data)
    all_windows = raw_data['windows']
    data = np.load('processed-data.npy')
    output = []
    actual_windows = []
Kruyff,D.L.W. (Dylan)'s avatar
Kruyff,D.L.W. (Dylan) committed
262
    print("Starting average progress")
263 264 265
    print("Initialized: " + str(time() - t0))
    for windows in all_windows:
        t1 = time()
Kruyff,D.L.W. (Dylan)'s avatar
Kruyff,D.L.W. (Dylan) committed
266
        actual_windows.extend(data[windows])
267 268 269
        if len(actual_windows) == 0:
            output.append([])
            continue
270 271 272
        max_values = np.maximum.reduce(actual_windows).tolist()
        min_values = np.minimum.reduce(actual_windows).tolist()
        average_values = (np.sum(actual_windows, 0)/len(actual_windows)).tolist()
Kruyff,D.L.W. (Dylan)'s avatar
Kruyff,D.L.W. (Dylan) committed
273
        output = [({
274 275 276
            'average': average_values,
            'max': max_values,
            'min': min_values
Kruyff,D.L.W. (Dylan)'s avatar
Kruyff,D.L.W. (Dylan) committed
277
        })] + output
278 279 280
        print("Average calculated: " + str(time() - t1))
    response = orjson.dumps(output)
    print("Averages calculated: " + str(time() - t0))
281 282
    return response

283 284
@app.route('/average-table', methods=['POST'])
def average_table():
285 286 287 288 289
    t0 = time()
    raw_data = orjson.loads(request.data)
    all_windows = raw_data['windows']
    data = np.load('processed-data.npy')
    output = []
290
    print("Initialized: " + str(time() - t0))
291 292
    for windows in all_windows:
        t1 = time()
Kruyff,D.L.W. (Dylan)'s avatar
Kruyff,D.L.W. (Dylan) committed
293
        actual_windows = data[windows]
294
        print(len(actual_windows))
295 296 297 298 299 300 301
        average_values = np.average(actual_windows, 0)
        # average_values = (np.sum(actual_windows, 0) / len(actual_windows))
        std_values = np.std(actual_windows, 0)
        max_values = average_values + std_values
        min_values = average_values - std_values
        # max_values = np.maximum.reduce(actual_windows).tolist()
        # min_values = np.minimum.reduce(actual_windows).tolist()
302
        output.append({
303 304 305
            'average': average_values.tolist(),
            'max': max_values.tolist(),
            'min': min_values.tolist()
306
        })
307 308
        print("Average calculated: " + str(time() - t1))
    response = orjson.dumps(output)
309
    print("Averages calculated: " + str(time() - t0))
310
    return response