#include "Sort.h" long Random1(long lo, long hi) { /* This functions returns a randomly chosen index i in the range lo..hi if lo <= hi. Otherwise, it returns LONG_MAX. */ double range; long i; if (lo > hi) return LONG_MAX; if (lo == hi) return lo; range = (double) (hi - lo + 1); i = lo + (long) ((range*rand()) / (RAND_MAX+1.0)); if (i < lo) i = lo; if (i > hi) i = hi; return i; } /* end Random1 */ int SetRandomSeed(long seed) { /* This function sets the seed of the random number generator to the given value if seed >= 0, and to a random value in the range 0-999999 determined by the UNIX wallclock if seed = -1. */ unsigned int seed1; #ifdef UNIX struct timeval timeval; #endif if (seed < -1) { fprintf(stderr, "SetRandomSeed(): Warning, seed < -1!\n"); } if (seed >= 0) /* set the seed to the given value */ seed1 = (unsigned int) seed; else { /* set the seed to a random value using the UNIX wallclock */ #ifdef UNIX gettimeofday(&timeval, NULL); seed1 = (unsigned int) timeval.tv_usec; /* clock time in microseconds */ #endif #ifndef UNIX /* fprintf(stderr, "SetRandomSeed(): random seed unavailable on non-UNIX systems!\n"); */ seed1 = time(0); #endif } srand(seed1); #ifdef INFO2 printf("Random number seed = %u\n", seed1); #endif return TRUE; } /* end SetRandomSeed */ void SwapLong(long *x, const long j0, const long j1) { /* This function swaps x[j0] and x[j1] in an array x of type long */ const long tmp = x[j1]; x[j1] = x[j0]; x[j0] = tmp; } /* end SwapLong */ void SwapDouble(double *x, long j0, long j1) { /* This function swaps x[j0] and x[j1] in an array x of type double */ double tmp; tmp = x[j1]; x[j1] = x[j0]; x[j0] = tmp; } /* end SwapDouble*/ long *QSort(long *X, long LengthX) { /* This function sorts array X in decreasing order by randomised quicksort. It allocates and returns a bookkeeping array I, which stores the original indices of the array items. */ register long t; long *I; if (!X) return 0; I = (long *) malloc(LengthX * sizeof(long)); if (I == NULL) { fprintf(stderr, "QSort(): Not enough memory for sort array!\n"); return 0; } /*## Initialise index array at original values */ for (t = 0; t < LengthX; t++) I[t] = t; quicksort3way(X, I, LengthX); return I; } /* end Qsort */ void quicksort(long *item, long *Index, long lo, long hi) { /* This function recursively sorts the items lo..hi in decreasing order and moves the corresponding index values in the same way. */ register long i, j; long i0, i1, i2, tmpidx, split; if (lo >= hi) return; /* Choose three splitters randomly */ i0 = Random1(lo, hi); i1 = Random1(lo, hi); i2 = Random1(lo, hi); /* Sort i0, i1, i2 in decreasing order of item value */ if (item[i0] < item[i1]) { /* swap i0 and i1 */ tmpidx = i0; i0 = i1; i1 = tmpidx; } if (item[i1] < item[i2]) { /* swap i1 and i2 */ tmpidx = i1; i1 = i2; i2 = tmpidx; } /* item[i2] is minimum value of three */ if (item[i0] < item[i1]) { /* swap i0 and i1 */ tmpidx = i0; i0 = i1; i1 = tmpidx; } /* item[i1] is median value of three */ /* Use item[i1] as a splitter */ split = item[i1]; i = lo; j = hi; while (i <= j) { /* Loop Invariant (LI): for all r: lo <= r < i : item[r] >= split for all r: j < r <= hi : item[r] <= split */ while (item[i] > split && i < hi) i++; while (item[j] < split && j > lo) j--; /* LI and lo <= i,j <= hi */ if (i < j) { /* item[i] <= split <= item[j], so swap item i and j */ SwapLong(item, i, j); SwapLong(Index, i, j); i++; j--; } else if (i == j) { if (item[i] >= split) i++; else j--; } /* LI */ } /* i > j and LI */ quicksort(item, Index, lo, j); quicksort(item, Index, i, hi); return; } /* end quicksort */ int CSort(long *J, long *val, long maxval, long lo, long hi) { /* This function sorts the items J[lo..hi] by increasing value val, using a counting sort. Items with the same value retain the original order. maxval >= 0 is the maximum value that can occur; 0 is the minimum value */ long t, j, r, total, tmp, *start, *C; if (lo >= hi) return TRUE; C = (long *)malloc((hi-lo+1)*sizeof(long)); start = (long *)malloc((maxval+1)*sizeof(long)); if (C == NULL || start == NULL) { fprintf(stderr, "CSort(): Not enough memory!\n"); return FALSE; } for (r=0; r<=maxval; r++) start[r] = 0; /* First pass. Count the number of items for each value. */ for (t=lo; t<=hi; t++) { j = J[t]; if (val[j] > maxval) { fprintf(stderr, "CSort(): val > maxval"); return FALSE; } start[val[j]]++; } /* Make start cumulative */ total = 0; for (r=0; r<=maxval; r++) { tmp = total; total += start[r]; start[r] = tmp; } /* Second pass. Copy the items into C. */ for (t=lo; t<=hi; t++) { j = J[t]; C[start[val[j]]]= j; start[val[j]]++; } /* Third pass. Copy the items from C back into J. */ for (t=lo; t<=hi; t++) J[t]= C[t-lo]; free(start); free(C); return TRUE; } /* end CSort */ void RandomPermute(long *X, long *Y, double *D, double *E, long lo, long hi) { /* This function randomly permutes the contents of the arrays X[lo..hi], Y[lo..hi] of type long and D[lo..hi], E[lo..hi] of type double, all by the same random permutation. The function can also be used for < 4 arrays: e.g., if X=NULL on input, then X is not changed. */ register long i; while (hi > lo) { i = Random1(lo, hi); if (X != NULL) { /*## swap: X[i] <-> X[hi] ##*/ SwapLong(X, i, hi); } if (Y != NULL) { /*## swap: Y[i] <-> Y[hi] ##*/ SwapLong(Y, i, hi); } if (D != NULL) { /*## swap: D[i] <-> D[hi] ##*/ SwapDouble(D, i, hi); } if (E != NULL) { /*## swap: E[i] <-> E[hi] ##*/ SwapDouble(E, i, hi); } hi--; } } /* end RandomPermute */ /** * Below, an implementation of 3-way quicksort is included. * This implementation combines the code from * https://sourceware.org/git/?p=glibc.git;a=blob;f=stdlib/qsort.c;h=12a5a7506a3337ecbebc6b1778425208ef8439c3;hb=HEAD * with knowledge taken from * Engineering a sort function; Jon Bentley and M. Douglas McIlroy; * Software - Practice and Experience; Vol. 23 (11), 1249-1265, 1993. * * In essence, the implementation below is an altered version of the glibc implementation, specialized for long values, * with additional logic to provide 3-way sorting functionality. Furthermore, pivots are chosen at random instead of * the median of 3 values at fixed positions, to provide better randomization of equal elements. * Random numbers are generated directly useing rand() instead of Random1(), to reduce the number of function calls. */ #define LT_GT > /* Swap two items. */ #define SWAP(A, B) {const long C = *(A); *(A) = *(B); *(B) = C; const long D = indices[A-list]; indices[A-list] = indices[B-list]; indices[B-list] = D;} /* Stack node declarations used to store unfulfilled partition obligations. */ typedef struct { long *lo; long *hi; } stack_node; /* The next 4 #defines implement a very fast in-line stack abstraction. */ /* The stack needs log (total_elements) entries. * Since total_elements has type size_t, we get as * upper bound for log (total_elements): * bits per byte (CHAR_BIT) * sizeof(size_t). */ #define STACK_SIZE (CHAR_BIT * sizeof(size_t)) #define PUSH(low, high) ((void) ((top->lo = (low)), (top->hi = (high)), ++top)) #define POP(low, high) ((void) (--top, (low = top->lo), (high = top->hi))) #define STACK_NOT_EMPTY (stack < top) /** * In each iteration, we execute a part of a recursion of the quicksort algorithm. * The list in each iteration can be viewed as follows: * +-----+-----+-----+-----+-----+ * [ = [ < [ ? ] > ] = ] * +-----+-----+-----+-----+-----+ * a b c d e f * * After processing [c,d], we have: * +-----+-----++-----+-----+ * [ = [ < ][ > ] = ] * +-----+-----++-----+-----+ * a b dc e f * * After moving the equal elements, we have: * +-----+-----+-----+ * [ < ] = [ > ] * +-----+-----+-----+ * b=a d c f=e * * Note that this (and all comments below) rely on LT_GT == < . In practice, Mondriaan * chooses LT_GT to be >, so 'higher' and 'lower' should be swapped in all comments below. * * Here: * - [a,b) denotes all elements equal to the pivot, as found by c, * - [b,c) denotes all elements lower than the pivot, * - [c,d] denotes all elements to be processed, * - (d,e] denotes all elements higher than the pivot, * - (e,f] denotes all elements equal to the pivot, as found by d. * * In each iteration, three random elements are selected from the then to be sorted set [c,d], of which the * median is determined. This element serves as pivot. Any elements equal to the pivot are sorted into * [a,b[ or ]e,f], while elements lower than or higher than the pivot go into respectively [b,c[ and ]d,e]. * After [c,d] is empty (d < c), [a,b[ and ]e,f] are moved in between [b,d] and [c,e]. * */ void quicksort3way (long *list, long *indices, size_t total_elems) { if (total_elems <= 1) return; long *a, *b, *c, *d, *e, *f; long n, el1, el2, el3, pivot; /* Initialise stack */ stack_node stack[STACK_SIZE]; stack_node *top = stack; PUSH (NULL, NULL); /* Initialise first iteration */ c = list; d = &list[total_elems - 1]; while (STACK_NOT_EMPTY) { /* Process [c,d] */ a = b = c; f = e = d; n = d-c+1; if(n == 2) { /* Two elements are easily sorted */ if(*d LT_GT *c) { SWAP(c, d); } ++c; --d; } else if(n > 2) { /*** DETERMINE PIVOT ***/ el1 = b[(long)((rand() / (RAND_MAX+1.0))*n)]; el2 = b[(long)((rand() / (RAND_MAX+1.0))*n)]; el3 = b[(long)((rand() / (RAND_MAX+1.0))*n)]; if(el1 < el2) { if(el2 < el3) pivot = el2; else if(el1 < el3) pivot = el3; else pivot = el1; } else { if(el1 < el3) pivot = el1; else if(el2 < el3) pivot = el3; else pivot = el2; } /*** PARTITION ***/ /* Check whether the start/end contains elements equal to the pivot */ while(b <= e && *b == pivot) { ++b; ++c; } while(b <= e && *e == pivot) { --d; --e; } /* The `collapse the walls' section of quicksort. */ while (c <= d) { /* Check for equals */ while(c <= d && pivot == *c) { SWAP(b, c) ++b; ++c; } while(c <= d && pivot == *d) { SWAP(e, d) --e; --d; } /* Move c and d until they have to be swapped */ while (c <= d && *c LT_GT pivot) ++c; while (c <= d && pivot LT_GT *d) --d; /* With LT_GT == <, we now have *d <= pivot <= *c */ if (c < d) { /* Now, *d <= pivot <= *c and c<d, hence swap. */ SWAP (c, d); /* Move elements equal to pivot */ if(pivot == *c) { SWAP(b, c) ++b; } if(pivot == *d) { SWAP(e, d) --e; } /* Mark c and d as processed */ ++c; --d; } else if (c == d) { /* By the while-loops, we have *d <= pivot <= *c. * Hence, if c == d, we have *d == *c == pivot. * As the next step will be swapping back the elements equal to the pivot, * we do not swap this element to an equal area. * We move both c and d, effectively marking this element as equal to the pivot. */ ++c; --d; break; } /* else, c > d and the loop will break */ } /* Now, c-d is either 1 (most of times) or 2 (if (c==d) occurred above). * Anyhow, d<c and the set of elements to be processed [c,d] is empty. */ /* If there exists a left/right partition (i.e., [b,c) or (d,e] is non-empty), * move the left/right equal-partition (i.e., [a,b) or (e,f]) between c and d. */ if(b <= d) { while(b > a) { --b; SWAP(d, b); --d; } } /* else, there exists no left partition, so moving equal elements is unnecessary. */ if(e >= c) { while(e < f) { ++e; SWAP(c, e); ++c; } } /* else, there exists no right partition, so moving equal elements is unnecessary. */ } else { fprintf(stderr, "quicksort3way(): Single element in set\n"); exit(-1); } /*** RECURSION ***/ /* Set up pointers for next iteration. First determine whether one or * both partitions are completely sorted. If so, ignore one or both. * Otherwise, push the larger partition's bounds on the stack and * continue sorting the smaller one. * The next set to be partitioned is assigned to [c,d]. */ if (d <= b) { if (c >= e) /* 'Greater than' [c,e] and 'smaller than' [b,d] partition both contain less than two elements. * These are sorted, so ignore both. */ POP (c, d); else /* 'Smaller than' partition [b,d] contains less than two elements. * It is sorted, so ignore it, and process [c,e]. */ d = e; } else if (c >= e) /* 'Greater than' partition [c,e] contains less than two elements. * It is sorted, so ignore it, and process [b,d]. */ c = b; else if ((d - b) > (e - c)) { /* Push larger 'Smaller than' partition [b,d] and process [c,e]. */ PUSH (b, d); d = e; } else { /* Push larger 'Greater than' partition [c,e] and process [b,d]. */ PUSH (c, e); c = b; } } } #undef LT_GT #undef SWAP #undef STACK_SIZE #undef PUSH #undef POP #undef STACK_NOT_EMPTY